
Journal of Statistical Physics, Vol. 41, Nos. 1/2, 1985 

A New Monte Carlo Simulation for 
Two Models of Self-Avoiding Lattice 
Trees in Two Dimensions 

Sergio Caracciolo t'2 and Ueli Glaus 3 

Received February 5, 1985; final May 2, 1985 

By means of a new Monte Carlo sampling of a grand canonical ensemble, we 
verify universality for the critical exponents 0 and v of two models of lattice 
trees constrained to be self-avoiding on sites or on bonds. The attrition con- 
stants are also obtained. This algorithm, a generalization of that recently 
proposed by Berretti and Sokal for random walks, appears to optimize the 
critical slowing down in the scaling region. Systematic and statistical errors are 
carefully estimated. 
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reduction. 

1. I N T R O D U C T I O N  

The self-avoiding lattice trees have been considered in physics as models for 
branched polymers. The repulsive interaction between different polymes 
and of a polymer with itself is taken into account as an excluded-volume 
effect. The statistics of polymers is simplified in the limit of large dilution in 
a good solvent by neglecting the interaction among different polymers and 
by mimicking the excluded-volume by a sell-avoiding constraint. 

In the limit in which the dimension D goes to infinity, a mean-field 
theory, which does not account for the self-avoiding constraint, predicts a 
critical behavior different from that of random walks. 
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In order to take into account fluctuations around the mean-field 
behavior, which are larger in lower dimensions, a field-theoretic for- 
mulation of the model has been introduced by Isaacson and Lubensky. (~) 
Their analysis shows that 8 is the upper critical dimension and allows to 
define an expansion in e for D = 8 - e in which the same authors computed 
the first-order corrections to the critical exponents. They also suggest that 
the number of cycles is a noncritical quantity so that polymers with and 
without cycles should have the same exponents in any dimension. 
Moreover, it is expected that lattice animals belong to the same univer- 
sality class. 

Later, Parisi and Sourlas (2) succeded in establishing a connection 
between this universality class in D dimensions and the Lee-Yang edge 
singularity of the Ising model in D - - 2  dimensions. Such a relation allows 
to express both v and 0 for the branched polymer problem in terms of the 
critical exponent a describing the singularity for the magnetization of the 
Ising model in an imaginary external field: 

O(D)= o ( D - 2 ) + 2  

a ( D ~ 2 ) +  1 (1.1) 
v ( D )  = 

D - 2  

The exponent cr is easily found to be cr = - 1  in 0 dimensions, and a = - 1 / 2  
in one dimension and (1.1) yields therefore the predictions 0 =  1 in two 
dimensions, and 0 = 1.5, v = 0.5 in three dimensions. 

A lot of work has been devoted to estimate these critical exponents in 
two dimensions, via series analysis (exact-enumeration method), real-space 
renormalization group, Monte Carlo simulations, and finite-size scaling. In 
this paper we report estimates for the attrition constant # and the critical 
exponents 0 and v for two models of self-avoiding lattice trees in two 
dimensions. These values were recovered from a new Monte Carlo 
algorithm sampling the trees in a grand canonical ensemble. 

Several reasons led us to undertake such a computation. First, there 
does not seem to exist any Monte Carlo method which simulates ensembles 
of the kind that naturally appears in a field-theoretic formulation of the 
problem. Our algorithm grew out of an attempt to generalize the Monte 
Carlo method used by  AragS.o de Carvalho et. al. (3~ to study the self- 
avoiding walk in four dimensions. This method allows transitions at any 
bond within the walk. But, having learned from Sokal (4~ that more 
efficiency in the algorithm combined with a simplification of the program- 
ming is achieved by allowing transitions only at the end points of the 
walks, we decided to follow this suggestion for our simulation. Berretti and 
Sokal (5) have studied the self-avoiding random walk in two dimensions by 
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this method, putting great emphasis on how to properly determine 
systematic and statistical errors in order to obtain Monte Carlo results of 
at least the same reliability as other numerical techniques. See also the 
more recent Ref. 6 where Guttmann, Osborn and Sokal tested a conjec- 
tured relation between the attrition constants for self-avoiding random 
walks on the triangular and honeycomb lattices. 

Second, we want to test if universality holds for these models and if 
one recovers the Parisi-Sourlas prediction for the exponent 0. Moreover, 
since (1.1) does not yield a value for v in D = 2, it is interesting to obtain 
additional information on it. 

Third, our aim eventually is to simulate more complicated models, 
such as random surfaces. We believe that it is essential to gain experience 
about the efficiency of such simulations by studying comparatively simple 
models. 

In Section 2 we define the models we are concerned with. A detailed 
description of the algorithm and the data structure is presented in Sec- 
tion 3. Results are collected and analyzed in Section 4. A comparison to 
previous works is given in Section 5 together with the main conclusions. 

2. D E F I N I T I O N  OF T H E  M O D E L S  

In order to define the models let us introduce the notion of an abstract 
tree: it is a minimally connected graph, i.e., a collection of points { 1,..., n } 
together with an (n x n) incidence matrix I U (with elements Ii, j=Is ,  i=  1 if 
the points i and j are connected by a link and Ii j  = Ij, i = 0 otherwise), such 
that by deleting any one of its nonzero entries the graph is no longer con- 
nected. For  a given lattice L we define a labeled lattice tree as an immersion 
of an abstract tree into the lattice by means of a correspondence i~--,si for 
i e { 1 ..... n } and si e L such that if I,j = 1 then si and s s are nearest neighbors. 
Therefore every link (0) of the graph must be an elementary bond b o of the 
lattice. The sites {si} and bonds {ba} are then said to be occupied. 
(Unlabeled) lattices trees are equivalence classes of labeled lattice trees 
with respect to permutations of the indices i e { 1,..., n}. 

The physical effect of self-repulsion of polymers is taken into account 
as a self-avoiding constraint. We shall deal with (i) site-self-avoiding lattice 
trees (S-SALT) which are lattice imbeddings of abstract trees, i.e., lattice 
trees that occupy each site at most once; (ii) bond-self-avoiding lattice trees 
(B-SALT), which are lattice trees that occupy each bond at most once. 

The S-SALT are oRen called branched polymers without cycles. Every 
S-SALT configuration defines a cluster of nearest neighbors sites, also 
called a site animal (SA). But the inverse is not true: for every SA there are 
in general many S-SALT which occupy the same sites. 
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The B-SALT are not the branched polymers with no restriction on the 
number of cycles. The latter are described in the literature as clusters of 
connected bonds or bond animals (BA). For  us, connectedeness is defined 
on the abstract tree; in particular one knows the images of the end links (0") 
of the abstract tree [i.e., of the links (0') such that either Iik = 0 or Ijk = 0 
for every k-r i, j ]  which is not always the case for the BA. Notice that, 
from the definition, it follows that a B-SALT is not an actual tree, it is only 
the image of an abstract tree. For  this reason we shall be concerned for the 
B-SALT also with quantities like its number of cycles, which should be 
strictly zero for a tree. 

We shall not consider as different ones trees with the same geometrical 
shape but different location on the lattice and, therefore, we will define a 
configuration T as an equivalence class of SALT which can be mapped 
onto each other by lattice translations. 

If CN,S-SALT and Cu, sa are the numbers of different configurations with 
N +  1 sites of S-SALT and of SA, respectively, one clearly has 

CN,S_SALT ~ CN,SA (2,1 ) 

Similarly, if CN,B-SALT and CN, BA are the numbers of different con- 
figurations with N bonds of B-SALT and of BA, respectively, it is true that 

CN, B_SALT ~ CN,BA (2.2) 

For  all these models it is expected that for large N 

CN, "~#NN-O (2.3) 

If universality holds, then 

0S-SALT = 0SA = 0BA = 0B-SALT (2.4) 

and if one counts, for example, the mean number of S-SALT of N + 1 sites 
which can be immersed in the corresponding site animal, the power law 
correction should drop out and asymptotically only an exponential factor 
should survive. 

If T is a SALT, one defines a two point function for the sites x and y 
in L by 

G~(x,y)= ~ /~lYl (2.5) 
T ~ x,y 

where IT[ is the number of bonds of T and/~ plays the role of a fugacity. 
If Ns(T) is the number of sites of an S-SALT, then 

Ns(T) = [T] + 1 (2.6) 
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which is not true for a B-SALT, where 

Nc(T) = ITI + 1 -Ns(T)  (2.7) 

is the number of cycles of T. In both cases I TI + 1 is the number of points 
of the corresponding abstract tree. 

The susceptibility is defined by 

Z~= ~, G/~(x, y)= ~ /3'TI(ITI + 1) 
yeL T~x 

(2.8) o~ 

= ~ C N ~ N ( N + I )  2 
N = 0  

where CN denotes for both models the number of configurations defined 
above. 

For fl/~ tic = 1//~, the susceptibility is expected to diverge like 

Z~ ~ (fl, - /3)  ~ (2.9) 

so that using the asymptotic behavior (2.1) one obtains 

= 3 - 0 (2.10) 

Another quantity of interest is the radius of gyration R of a SALT T. We 
have used the following definition: given an abstract tree with points 
{ 1,..., n }, by the relation 

i~-+si= (x~, x 2) (2.11) 

where the superscripts denote the different directions in the lattice, one 
defines the coordinates (if1, 22) of the barycenter of T such that 

N 

0 =  ~ ( x { - 2  j) for j = l ,  2 (2.12) 
i=~ 

Then, we introduce, for each T, the mean distance of its sites from its 
barycenter: 

1 N 2 
R2=~i~=lj~=l(xJ--xJ)2 ( 2 . 1 3 )  

The mean radius of gyration for all equivalence classes of SALT with N 
bonds is 

1 
- E R ~  (2 .14)  RN CN T:I~I = N  
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It is expected that for large N, R N has a scaling behavior described by an 
exponent v: 

R u i N  v (2.15) 

Note that (2.3) and (2.15) are only the leading terms in an asymptotic 
expansion of CN and RN for large N; the renormalization group predicts 
analytic as well nonanalytic subleading correction terms for the actual 
behavior. In any event, there will be deviations from the asymptotic scaling 
formulas (2.3) and (2.15) for finite N and we describe in Section 4 how we 
have treated these in connection with the estimates of the systematic errors. 

3. DESCRIPTION OF THE A L G O R I T H M  A N D  THE DATA 
STRUCTURE 

Our algorithm really generates lattice trees rooted at the origin of a 
square lattice (they are equivalence classes of labeled lattice trees with 
respect to permutations of the indices iE {2,..., n} and such that the index 1 
is mapped onto the origin) in a grand canonical ensemble. Each SALT T 
rooted at the origin has the probability 

(1 + ITI)/3 Irl 
Pr(T) = (3.1) 

~, CN(N+ 1)2fl  N 
N = 0  

of occurring in the ensemble. The normalizing factor is just the suscep- 
tibility Z~ of the related field theory. Using mean-field bounds, one can 
rigorously prove that Z~ diverges for/~/"/?c = 1/#. 

Our algorithm is a Markov process with (3.1) as its unique stationary 
probability distribution. A Monte Carlo step is defined by the following 
procedure: an index i E {1 ..... I TI + 1} (i.e., a point in the underlying 
abstract tree) is first chosen at random. A random number rE [0, 1) is then 
compared to a constant p(/3) < 1. If r < p(/~), an attempt is made to remove 
s i from T, which is realized if i-~ 0 and if i is connected (in the underlying 
abstract tree) to only one other point. If r > P(3), it is attempted to add a 
bond b at si in one of the 2D possible directions induced by r lying on one 
of 2D equal sections in the interval [p(/?), 1 ]. The self-avoidance check is 
now performed for the site s on the other end of b or on b itself, respec- 
tively, for the site and the bond problem. If the transition is not allowed, 
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then the previous configuration is taken also at the new step. Therefore, the 
transition probabilities are 

t 1 1 [I__p(fl)]ZSALT(T,), if v-<r '  I TI + 1 2D 

1 
w ( T ~  T')= iT-~--~p(fl), if T ' < T  

, {1ZD - - -  - -  - -} a-~EI--p( f l ) ]A(T)+p(B)B(T)  , if r = r '  

(3.2) 

Here, the relation < means that the tree on the right can be obtained from 
the tree on the left by adding one bond. ZSALT is the characteristic function 
on the particular set of SALT (it is not the susceptibility). A(T) is the num- 
ber of ways a bond can be added to T such that the resulting T' is not self- 
avoiding. B(T) is the number of indices i e { 1 ..... I TI + 1 } (i.e., points in the 
underlying abstract tree) from which deletion is forbidden: i.e., for which 
either i = 1, or i is connected (in the abstract tree) to more than one point, 
or both. 

The constant p(fl) is fixed in order that w might satisfy the detailed- 
balance condition for the probability Pr: 

Pr(T) w(T--, T') = Pr(T') w(T' --* T) 

inserting (3.1) and (3.2) in (3.3), one finds 

(3.3) 

1 
p(fi) - - -  (3.4) 

1 + 2Dfl 

This algorithm is also ergodic: given any trees T and T', bonds can be 
removed successively from T until the "empty tree" consisting only of the 
origin is reached, then, by adding bonds, T' can be built up with a finite 
probability. 

The algorithm thus satisfies the detailed balance and is ergodic. This 
ensures that (3.1) is the unique stationary probability distribution for it. 

As in the case of Berretti and Sokal, (5~ the observable IT[ is executing 
(crudely speaking) a random walk with drift on the positive integers. It can 
therefore be expected that the average time for T to return to the "empty 
tree" is proportional to I TI 2. Thus, after a time z (measured in Monte 
Carlo steps) of order 

- ( I T I )  2 (3 .5 )  
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trees should no longer be significantly correlated. This is actually the case, 
as reported in Section 4, where a detailed analysis of the autocorrelation 
time r is described. The mean number  of bonds 

N ( N +  1): CNfl N 
N -- O f l  ~ ) 

(ITI > = (3.6) 
flc--fl 

F, (N + ~): CN~ N 
N - - O  

can now be adjusted by suitably tuning 8- 
We shall now describe the data structure we used to represent a tree T 

in the computer. (4) 
Let {si ..... SlTI+X} be the sites of the tree T, then, to each index i we 

2D associate a link field {fij}t= 1 with 2D entries. If the bond bi, t emanating in 
direction I from s~ is occupied, we set fi, l = J, where j is the index of the site 
sj at the other end of the bond b~j. Directions are enumerated in such a 
way that bi, t--bj, zD+l l. Therefore, fi, t = j  implies f j , :D+l_t=i.  We also 
used an additional array {tg} associated with each site sg, which contains 
the number of occupied bonds emanating from si. In order to check the 
self-avoiding constraint for the S-SALT, we assigned one bit to each site of 
a (512 x 512)-square lattice. This bit was set to one if the site was occupied 
and zero otherwise. For  the B-SALT, four bits were assigned to each site 
for the four bonds emanating from it. Although the B-SALT bit map is 
then redundant by a factor two, the self-avoidance check is greatly speeded 
up. 

Using this data structure, the computer  time for a Monte Carlo step 
does not depend on the number  of bonds of T, i.e., is an O(1) operation 
with respect to [T[. 

4. RESULTS AND ANALYSIS OF STATISTICAL AND 
SYSTEMATIC ERRORS 

In this section we report the results of our Monte Carlo (MC) 
simulations for studying the critical behaviour of the SALT models. In the 
analysis of the statistical and systematic errors, we have relied on the 
detailed work by Berretti and Sokal iS) and we refer the reader to their 
paper for further information. 

We performed main runs at fl = 0.185 for the S-SALT and fl = 0.167 
for the B-SALT. These values correspond to a mean number of bonds 
( I T I )  ~ 4 0  for both models. 7 • 109 MC iterations were performed for the 
S-SALT, which required a total of about  180 hr of C P U  time on a CDC- 
174. One MC iteration therefore takes about  92 #see. 6 • 10  9 MC iterations 
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were performed for the B-SALT, for a total of about 380 hr of CPU time 
on a VAX 11/780. One MC iteration lasts here more because of the slower 
computer and the more complex self-avoidance check. The rejection rate, 
at this value of/3, was 65.65%, for the S-SALT, of which 25.35% was due 
to the self-avoiding constraint and the rest to attempts to remove inner 
bonds; in the B-SALT case the total rejection rate was the 62.21%, the 
21.15% due to the self-avoidance check. In both cases, data were taken 
every 2 0 0 0 0 M C  iterations and stored on tape for the subsequent 
statistical analysis. 

For  a correct treatment of the statistical errors, we have estimated the 
autocorrelation time in MC steps of our stationary stochastic process. 

Let A(T) be a real-valued observable; then, successive samples of the 
sequence A,=A(Tt)  produced by our algorithm are highly correlated, 
because, in one MC step, at most one point can be added or removed from 
Tt. 

We use the sample mean 

1 M 
(A obs ~ At 

M =-m t=l 
(4.1) 

as an estimator of the expectation value 

A( T) Pr(T) 
T 

( A )  - (4.2) 

As M.~ oe, ( A ) ~ S  converges with probability 1 to ( A )  (ergodic theorem); 
and for large but finite M, ( A ) ~ S  is approximately Gaussian distributed 
with mean ( A )  and variance 

1 M 

~r 2 - M 2  ~ CAA(i--j) 
i,j= 1 

1 +co 
~- -  ~ CAA(S) 

M s =  --o3 

(4.3) 

where 

CAA(S)= ( A , A , + ~ ) -  ( A )  2 (4.4) 

is called the autocorrelation function of the process {A,} (central limit 
theorem). Since {At} is a function of a reversible Markov process, its 
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autocorrelation function satisfies the spectral representation (Ref. 5, 
Appendix B): 

CAA(S) = e alsldp(a), s even 

where dp(a) is a positive measure. Therefore, we have 

0 <~ CAA(S') <~ CAA(O) exp(--ISl/ZAA) 

with 

"CAA = lim ]sl ~ lim v(s) 
,~oo IogECAA(s)/CAA(O)] ,4 

Hence, inserting (4.6) in (4.3) the variance a~ can be estimated by 

(4.5) 

(4.6) 

(4.7) 

1 
a2A <~-~ CAA(O) 2rAA (4.8) 

for M>> rAA >> 1. The problem of correctly including the autocorrelation in 
the evaluation of the statistical error bars is now reduced to estimating the 
autocorrelation function CAA(S) and thereby the autocorrelation time ~A~. 
For CAA(S), we use the estimator 

1 M Isl 
CAa(s)~s-M_]s~ I ~ A tA ,+l , l - ( (A)~S)2  (4.9) 

t= l  

which has a bias of order 1/M. A crude estimate for the variance of 
CAA(S)~ s is provided by 

o b s  Var(CAA(S)M ) <<. C2A(O) (4.10) 

In Fig. 1 we have plotted the estimator ~AA(S) of'~AA(S ) for A = I T], 
obtained by using CAA(S)~ S in (4.7). In Table I, we list the sample mean 
and the autocorrelation times for the number of bonds ]T], the square 
radius of gyration R2r, and the number of branches Nb(T) [cycles N~(T)] 
for the S-SALT (B-SALT). The error bars in Table I were obtained by 
using the estimated values for z,~A and CAA(S) to obtain the variance of 
CAA(S)~ ~ from (4.10), which is then used to obtain error bars on ~AA(S) at 
s = 10 for both models. They are the statistical 95 % confidence limits. All 
these values are consistent with the autocorrelation times 

= (6.5 ___ 0.6) x 104 MC steps (4.11 ) 
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Fig. 1. For the two cases of S-SALT (S) and B-SALT (B) we plot the estimators for the 
autocorrelation in time of the mean number of bonds in units of 104 MC steps, as function of 
the separation s. After the plateau the signal is already noise. 

for the S-SALT,  and  

"c = (5 .0  q- 0 .5 )  x 104 M C  steps 

for the B-SALT.  

We tested the conjec ture  

(4.12) 

z = const< I TI >2 (4.13) 

empir ica l ly  by per forming  add i t i ona l  runs at  different values for ft. The  
resul t ing es t imates  for z are consis tent  with (4.13) with the cons tan t  
a p p r o x i m a t e l y  equal  to 40 for the S - S A L T  and  28 for the B-SALT.  
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Table I. Estimates for the Autocorrelat ion in 
Time, Measured in MC Steps, for Various Obser- 

vables, w i th  Their Statistical Errors. ca) 

A <A > "CAA/10 4 MC steps 

~-(S) 
ITI 39.41 • 6.4_+0.6 
R~ 15.61 +0.31 6.7_+0.4 

Nb(T ) 10.54 _+ 0.06 6.4 __+ 0.6 

~-(B) 

I TI 43.33 + 0.23 5.0 + 0.5 
R 2 13.35 _+ 0.26 4.6 + 0.6 

No(T) 3.68 + 0.06 5.0 + 0.6 

a The (S) refers to the S-SALT model as the (B) to the B- 
SALT one. This notation is used also in other tables and 
in figures. 

Our  goal will be to measure critical parameters  at fixed /3. For  this 
purpose we need an ansatz for the asymptot ic  behaviour  in the number  of 
bonds  N of  the number  of configurations CN and the mean radius of 
gyrat ion R N. This procedure is somehow different f rom what  is usually 
done in the literature, where measures are taken as a function of/~. But, 
once more  following Ref. 5, we could, in this way, keep separated statistical 
from systematic errors. In  order to estimate # and 0 we start from the 
assumption that  for N >~ Nmi n one has exactly 

CN=ao#NN ~  + N )  (4.14) 

for given al.  Of  course this expression does not  take into account  correc- 
tions to scaling as predicted by the renormalizat ion group analysis, but, at 
the moment ,  we cannot ,  within the accuracy of  our  statistics, disentangle 
them from the analytic subterms. 

In our  case, we are actually generating the distribution 

PN(#, O) = Pr(ITI = N) -- 
( N +  1) 2 CN~ N 

Z~ 
(4.15) 

By (4.14), PN i s - - for  fixed a l - - a n  exponential  family parametr ized by # 
and 0. For  such a family, the maximum-l ikel ihood estimate for its 



Two Models of Lattice Trees 107 

parameters amounts to fix them so that the observed (sample) mean values 
of lrl and log I TI equal their theoretical mean values. That is, if for an 
observable f ( I  T] ) one defines the theoretical expectation 

f (N)  PN(P, O) 
N -  Nmin 

<f([ T[ ) ) ~,o= (4.16) 

PN(U, O) 
N -  Nmin 

and the MC expectation 

M 

f(IT, I)8(IT~I- Nmi~) 
t = l  

<f([ T[) )obs = 

M 

y'  0([ T,I - Nmi,, ) 
t - - I  

with the usual definition of the 8 function 

(4.17) 

1, i fx~>0 (4.18) 
0(X)= 0, otherwise 

where T t is the tth SALT in the MC sample; then, one must solve the 
system of two coupled nonlinear equations 

<ITI >~,0 = <ITI >obs 
(4.19) 

<log ITI >~,0= <log ITI >obs 

in order to obtain the maximum-likelihood estimates/~ and 0 as functions 
of Nmi, and al.  

The statistical errors on the values so obtained are known a priori, as 
the statistical distributions of ~ and 0 become Gaussian, with an explicity 
known covariance matrix, in the limit of a large sample of independent 
trees with N~> Nmi n. 

In Table II we report the solutions of (4.19) for various Nmin and al. 
The underlined values do not exhibit a systematic dependence on Nmi n for 
constant a~. We take the arithmetic mean of these values for # and 0, 
respectively, as the central estimates and twice their variance as an estimate 
of the systematic error. 

We find in the case of the S-SALT 

~t = 5.1434 __+ 0.0013 __+ 0.0057 

0 = 1.001 +__ 0.024 + 0.054 
(4.20) 
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Table II. Estimators for  IJ and 0, for  the  T w o  Cases, as Funct ion of Nrnin and 
the Constant  a 1 Which  Appears in the Ansatz (4 .14)  to  Measure  Correct ions to 

Scaling. 

Nmi n 10 15 20 25 30 

a 1 ~ 0 y 0 /z 0 /,t 0 # 0 

. - (s )  
0 5.1464 1.0533 5.1456 1.0446 5.1443 1.0281 5.1446 1.0321 5.1449 1.0372 
0.3 5.1453 1.0349 5.1449 1.0299 5.1437 1.0213 5.1442 1.0213 5.1446 1.0276 
0.6 5.1443 1.0171 5.1442 1.0157 5.1432 1.0036 5.1438 1.0107 5.1442 1.0180 
0.9 5.1434 1.0000 5.1435 1.0018 5.1427 0.9917 5.1433 1.0003 5.1439 1.0087 
1.2 5.1424 0.9834 5.1429 0.9882 5.1422 0.9801 5.1430 0.9901 5.1436 0.9995 
1.5 5.1416 0.9673 5.1423 0.9755 5.1417 0.9688 5.1426 0.9800 5.1432 0.9904 
1.8 5.1407 0.9518 5.1417 0.9421 5.1413 0.9576 5.1422 0.9701 5.1430 0.9815 
2.1 5.1399 0.9367 5.1411 0.9495 5.1408 0.9467 5.1418 0.9605 5.1426 0.9727 

0.9 
1.2 
1.5 
1.8 
2.1 
2.4 
2.7 
3.0 

. - ( B )  
5.7357 1.0410 5.7348 1.0298 5.7355 1.0384 5.7346 1.0261 5.7343 1.0229 
5.7349 1.0260 5.7342 1.0174 5.7350 1.0277 5.7342 1.0166 5.7340 1.0143 
5.7341 1.0115 5.7336 1.0053 5.7345 1.0172 5.7338 1.0073 5.7337 1.0058 
5.7334 0.9973 5.7331 0.9934 5.7341 1.0069 5.7335 0.9981 5.7334 0.9975 

5.7 0.9836 5.7325 0.9818 5.7337 0.9968 5.7331 0.9890 5.7331 0.9893 
5.7319 0.9703 5.7320 0.9705 5.7333 0.9868 5.7328 0.9801 5.7328 0.9812 
5.7313 0.9573 5.7315 0.9594 5.7328 0.9771 5.7324 0.9713 5.7326 0.9732 
5.7306 0.9446 5.7310 0.9486 5.7325 0.9675 5.7321 0.9627 5.7323 0.9653 

w h e r e  t he  f irst  e r r o r  b a r s  refer  to  t he  s y s t e m a t i c  e r r o r s  a n d  t he  s e c o n d  to  

the  s t a t i s t i c a l  ones .  H e r e ,  as e v e r y w h e r e ,  t he  s t a t i s t i c a l  e r r o r  b a r s  a re  t he  

c lass ica l  9 5 %  c o n f i d e n c e  l imi t s  for  Nmi n = 15. 

F u r t h e r m o r e ,  for  t he  B - S A L T  

# = 5.7335 _ 0.0011 _+_ 0 .0050  

0 = 0.999 _+ 0 .020 _+ 0.045 
(4 .21)  

C lea r ly ,  t he  P a r i s i - S o u r l a s  p r e d i c t i o n  is v e r y  wel l  c o n f i r m e d  b y  b o t h  

m o d e l s .  

I n  e s t i m a t i n g  t he  c r i t i ca l  e x p o n e n t  v, we r e p l a c e  t he  d e f i n i t i o n  (2.15)  

by  a m o r e  d e t a i l e d  a n s a t z  

log  R 2 = 2v l o g ( N +  b l )  + bo (4.22)  
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at fixed b~, which plays  the role of  a cor rec t ion  to scaling. Here  the left- 
hand  side mean  is t aken  at fixed N, grea ter  than  or  equal  to Nmi n. Then  the 
leas t -squares  fit p rocedure  gives rise to the fol lowing es t imators  9 and  /~o 
for v and  the cons tan t  bo: 

~X; y)obs  
,)-- 

2<X; X>  ~ 

60 = (X ;  X')~ y)obs  _ ( X ;  Y)~176  (4.23) 

. 6 4 5  

.64 

. 655  

.63 

0 

_ t  t I I r I t I t t t I I F J I t I I I t r I I t  

b 4 = 2.0 

b~ = t.8 

~_.o...._..-----o b 4 =4.6 

~ b 4 =4.2 
I I i I t J t I i i J I I I I I I I i I I i i r i 

.02 .04 .06 .08 4 .42 

't/Nmin (S) 

I I I I I I I I I I I I I 1 I I i I I I I I I I I I 
�9 68--" ~ b4=7 --~ 

.66--  J f b ~ = 6  

Z/ b~ = 5 

. 6 4 -  ~ ~ : ~ ' ~ ' ~ ' ~ ' - ' ~  bt = 4 

-4 
.62  , o _ _ . _ . _ _ - - - - - o  b 4 = 3 t 

J i i I i i i I ] J t I ] t i I  i i  i I i i i I iI 
0 .02 .04 .06 .08 4 J2 

4/Nmin (B) 

Fig. 2. We plot the estimators for the exponent v as function of the inverse of the minimum 
value of bonds allowed in the ensemble and the constant bl which appears in the ansatz 
(4.22). The continuous straight lines are drawn simply to indicate for what bl each small circle 
has been determined. Dotted lines indicate the confidence limits in the analysis of systematic 
errors. 
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where X =  log(I TI + bl), Y= log R<.< W; Z )  denotes the truncated expec- 
tation 

< W; Z )  = < W Z )  - < W ) < Z )  (4 .24 )  

and <. )obs denotes the sample mean (4.17) of all trees T with I TI ~> Xmm- 
We found it suggestive to present the resulting estimators ~)(Nmin, b l )  

in form of a plot as function of 1/Nmi n for various values of bl in Fig. 2. 
The lines in Fig. 2 are guides to the eye and we used them to obtain our 
central estimates 

v = 0.640 + 0.004 _+ 0.004 for the S-SALT 

v = 0.635 + 0.009 _+ 0.006 for the B-SALT 

0 " )  

( - -  

0 .5 

. 29  

1 ,0  
.28  

c -  

r- .27  

.2 
0 

i I i t I I , i i I I i , I i i i I I I 

i I i t I I t I I I I I I I i I 

.02 .04  .06 .08 

(s/ I / N m i n  

I I 

.42 

(4.25) 

(4.26) 

i_ 

I I i t I [ t f t [ I i 1 I I i J i I I _ 

u'l . 0 9 4  
r , -  

_o . 0 9 2  

. 0 9  

--~ .088 
U 
>,,  
0 

. 0 8 6  
i I i I r l i , i I i i , I i t , I i I 

0 .02 .04 .06 .08 .I .t2 

(al 4 /Nmin 
Fig. 3. These are the ratios between the mean number of branches and the mean number of 
bonds for the S-SALT (S) and the mean number of cycles and the mean number of bonds for 
the B-SALT (B) as function of the inverse of Nmi n the minimum value of bonds allowed in the 
ensemble. 
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The equations (4.20), (4.21) and (4.25), (4.26) strongly support the conjec- 
ture that the two models belong to the same universality class. 

Finally, we will report our estimates for the ratio of the mean number 
of branches <Nb(T)> over the mean number of bonds <]rl >, for the S- 
SALT. The results are plotted in Fig. 3-(S) as function of 1/Nmm. We can 
extrapolate 

<Nb(~) 
<ITI > 

- -  = 0.2675 ____ 0.0025 __+ 0.0005 (4.27) 

In Fig. 3-(B) it is plotted the ratio between the mean number of cycles 
<No(t)> and the mean number of bonds <]T]> for the B-SALT, as 
function of 1/Nmin. It is interesting to remark that No(T) is increasing with 
Nmi= more rapidly than the number of bonds. In the plotted region their 
ratio is very well described by a function Co + c lNmi ,  with Co and cl con- 
stants. Presumably, the fact that this ratio is not yet well saturated explains 
why the errors in (4.26) are larger than those in (4.25). 

A word of caution can still be added as far as the evaluation of the 
systematic errors is concerned. They are obtained only on the basis of 
internal consistency of the estimate, but, after all, the average radius of 
gyration of the trees we arc simulating is only ~ 4  lattice spacings, so the 
corrections to scaling are likely to be fairly large. From this point of view, a 
simulation of longer trees, at the cost of more computer time, could be 
used for a more confident discussion of corrections to scaling. 

5. C O M P A R I S O N  WITH PREVIOUS W O R K  A N D  
C O N C L U S I O N S  

The first observation resulting from a comparative reading of the 
literature is that there does not seem to exist a study which gives the values 
for #, 0, and v simultaneously. 

Gaunt  et al. (7) have considered the S-SALT problem by series analysis 
of exact-enumeration data in dimension D, for 2 ~< D ~< 9. In D = 2 S-SALT 
are counted up to N =  11 and the resulting estimates are 

and 

0 = 1.00 -4- 0.02 (5.1) 

# = 5.14 _+ 0.01 _+ 0.26A0 (5.2) 

where the first error for # is computed keeping 0 fixed at 1 and AO is the 
difference from this central estimate. These estimates agree with ours, but 

822/41/1-2-8 
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looking at their plot of 0, we believe that their error bars for 0 should be 
multiplied by at least a factor 5. 

S-SALT with a fixed number of bonds, ranging from 20 to 600, have 
been generated with a Monte Carlo algorithm by Seitz and Klein. (8) Their 
estimates are 

v=0.615 (5.3) 

which is significantly smaller than ours, probably due to the mixing of 
statistical and systematic errors occurring in their least squares fitting 
procedure, and the ratio 

( Ub( T) ) 
= 0.266 (5.4) 

( I Z l )  

which is very close to our value (4.27). 
Previously, Redner (9) has measured 

v =0.57 +0.06 (5.5) 

for the S-SALT in a static Monte Carlo simulation in which all the vertices 
were of order four and with a fixed probability of creating a vertex. 

By real-space renormalization group recursion relation, Family (1~ 
obtained 

v = 0.637 (5.6) 

which is surprisingly accurate considered the approximations involved, and 
the quite different value for the attrition constant 

# = 3.88 (5.7) 

It seems that the B-SALT had not been considered earlier in the 
literature and so no direct comparison can be made. 

Further information is available for the critical exponents v and 0 
since the SALT are believed to belong to the same universality class as lat- 
tice animals. We summarize these results in Table III. Some earlier Monte 
Carlo studies use an algorithm, due to Stauffer, (11) that generates site 
animals with a fixed number s of occupied sites; each SA with t perimeter 
sites (i.e., nearest neighbours of occupied sites which are themselves empty) 
has the probability 

t(1 - p ) '  
Pr(t) = (5.8) 

2(s+ 1) 

Z tgst(1--P) ' 
t 0 
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Table II1. Summary of the Available Information about the Exponents v and 0 
for the Lattice Animals in Two Dimensions 

v 0 

Monte Carlo 0.66 + 0.007 (H) 
0.65 + 0.02112) 

Exact enumeration 0.64 _+ 0.004 (13) 1.00 + 0.02 (17) 

Real-space 0.649 ___ 0.009 (14) 

Renormalization group 
Phenomenological 

Renormalization group 
0.6408 • 0.0003 (~s) 

of occurring. The parameter  p plays here the same role as the/~ in (3.1) and 
gst is the number of SA with given number of s sites and t perimeter sites. It 
seems that the factor t in (5.8), which is a consequence of choosing 
perimeter sites at random, has been forgotten in Refs. 11 and 12; for- 
tunately, this does not affect the estimates for v. In the limit p "~ 0 the 
desired distribution is then recovered. While the error bars appear to be 
underestimated in Ref. 11, Ref. 12 gives a very reasonable estimate. 

Also the error bars of Derrida and De Seze ~ are very optimistic (see 
Ref. 16 for a criticism), but their estimate is consistent with ours. 

In conclusion, we have obtained by this simulation of two SALT 
models: (a) estimates of nonuniversal quantities like the attrition constants 
and the mean number  of branches and loops; (b) estimates of the critical 
exponents v and 0 which support  the conjectured universality and the 
dimensional reduction scheme; (c) a test of validity for this Monte  Carlo 
algorithm and an estimate of the dynamical critical exponent of its 
autocorrelation; (d) valid statistical error bars and a careful analysis of the 
systematical errors. 

These results are encouraging the application of such methods to more 
complicated problems, where other methods find more difficulties. 
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